Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes.
نویسندگان
چکیده
Yeast cells contain a family of three monothiol glutaredoxins: Grx3, 4, and 5. Absence of Grx5 leads to constitutive oxidative damage, exacerbating that caused by external oxidants. Phenotypic defects associated with the absence of Grx5 are suppressed by overexpression of SSQ1 and ISA2, two genes involved in the synthesis and assembly of iron/sulfur clusters into proteins. Grx5 localizes at the mitochondrial matrix, like other proteins involved in the synthesis of these clusters, and the mature form lacks the first 29 amino acids of the translation product. Absence of Grx5 causes: 1) iron accumulation in the cell, which in turn could promote oxidative damage, and 2) inactivation of enzymes requiring iron/sulfur clusters for their activity. Reduction of iron levels in grx5 null mutants does not restore the activity of iron/sulfur enzymes, and cell growth defects are not suppressed in anaerobiosis or in the presence of disulfide reductants. Hence, Grx5 forms part of the mitochondrial machinery involved in the synthesis and assembly of iron/sulfur centers.
منابع مشابه
Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism. II. Role of glutaredoxin Grx5.
Grx5 is a Saccharomyces cerevisiae glutaredoxin involved in iron-sulfur cluster (FeSC) biogenesis. Previous work suggests that Grx5 is involved in regulating protein cysteine glutathionylation, prompting several questions about the systemic role of Grx5. First, is the regulation of mixed protein-glutathione disulfide bridges in FeSC biosynthetic proteins by Grx5 sufficient to account for the ob...
متن کاملThe mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation
The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron-sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches ...
متن کاملMitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins
Assembly of mitochondrial iron-sulfur (Fe/S) proteins is a key process of cells, and defects cause many rare diseases. In the first phase of this pathway, ten Fe/S cluster (ISC) assembly components synthesize and insert [2Fe-2S] clusters. The second phase is dedicated to the assembly of [4Fe-4S] proteins, yet this part is poorly understood. Here, we characterize the BOLA family proteins Bol1 an...
متن کاملSaccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes.
The Saccharomyces cerevisiae GRX5 gene codes for a mitochondrial glutaredoxin involved in the synthesis of iron/sulfur clusters. Its absence prevents respiratory growth and causes the accumulation of iron inside cells and constitutive oxidation of proteins. Null Deltagrx5 mutants were used as an example of continuously oxidized cells, as opposed to situations in which oxidative stress is instan...
متن کاملMonothiol Glutaredoxins Function in Storing and Transporting [Fe2S2] Clusters Assembled on IscU Scaffold Proteins
In the bacterial ISC system for iron-sulfur cluster assembly, IscU acts as a primary scaffold protein, and the molecular co-chaperones HscA and HscB specifically interact with IscU to facilitate ATP-driven cluster transfer. In this work, cluster transfer from Azotobacter vinelandii [Fe(2)S(2)](2+) cluster-bound IscU to apo-Grx5, a general purpose monothiol glutaredoxin in A. vinelandii, was mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2002